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ELECTROMAGNETIC SHIELDING EFFECTIVENESS FOR
ISOTROPIC AND ANISOTROPIC MATERIALS

i. INTRODUCTION

The purpose of this report is to present analysis techniques applicable
to the assessment of electromagnetic shielding effectiveness of a variety of
types of materials including advanced composite materials (e.g., fiber-rein-
forced epoxies where the fibers are "long" and "oriented"), conductive filled
thermoplastics (randomly oriented, chopped fibers or other conductive particles)

and the usual metallic shields. Advanced composite materials are now widely
used as structural and surface components in aircraft and spacecraft. Chopped-
fiber-filled structural foams are used as enclosures for electronic equipment.

Such applications require accurate assessment of electromagnetic shielding
effectiveness.

The following sections present a unified approach to plane-wave shield-
ing analysis using ABCD and scattering parameter techniques based on analogies
with distributed networks. Related techniques and preliminary results were
presented in an earlier report [1]. Some key results from [11] are included in
this report for completeness.

Chapters 2 and 3 present background material. Several important results
for isotropic materials are developed in Chapter 3 and presented in new formats.
Chapter 4 introduces scattering parameter techniques. Chapter 5 treats aniso-
tropic multilayered shields from several points of view, including a very
general arbitrary polarization, arbitrary angle of incidence analysis.

2. BACKGROUND

An electromagnetic shield is an enclosure intended to prevent electro-
magnetic energy within it from escaping and conversely to prevent electromag-
netic energy exterior to it from penetrating to the interior. A perfect shield
would provide total isolation between interior and exterior. In practice the
degree of isolation between interior and exterior is less than perfect and
seldom exceeds 100 dB.

The degret :f isolation provided between interior and exterior of a
shield is commonly called its shielding effectiveness. A measure of shielding
effectiveness could be obtained by determining field strength at a particular
location inside the shield and then removing the shield and determining the
ambient field strength. Errors can occur in such measurements due to such
effects as modification of the sources of the external ambient field by the
presence of the shield, and proximity effects on the internal field measuring
device caused by the shield walls.

Shielding effectiveness is, thus, the insertion loss incurred by elec-

tromagnetic energy in passing from an input medium through a shield into an
output medium. Both reflection and absorption contribute to shielding effec-
tiveness. Aircraft require substantial electromagnetic shielding to protect
sensitive internal electronics from extraneous signals. Some vital areas

particul.rly sensitive to inadequate shielding include low-level integrated
1



circuit communication and navigation equipment, fly-by-wire systems, fire
control systems, and electro-explosive devices.

In a typical situation the skin of an aircraft might be considered the
shield with the air external to the vehicle as the input medium and a complex
mixture of personnel, air, cables, electronic devices, fittings, etc. of the
aircraft's interior as the output region. The external electromagnetic field
to be excluded from the interior of the shield might be produced by any of a
variety of electromagnetic sources including a direct lightning strike to the

aircraft, a nearby lightning strike, a nearby radar or other high-powered
transmitter, or perhaps by a nuclear detonation (EMP). Alternatively, the
shield may be the cabinet enclosure of an on-board piece of equipment whose
interior is to be protected from all the above types of signals plus possible

interference from other on-board equipment.

Potential interfering electromagnetic fields may arise from "nearby" or
"distant" generating sources. "Near" to a generating source, usually either

the electric or the magnetic component of the field will dominate. For sources
that resemble loops of current, magnetic field dominates in the region near to
the source. For sources that resemble linear dipoles, electric field dominates
in the region near to the source. Sufficiently far from either type of source,
the propagating field becomes a plane wave in which the field energy is equally
divided between the magnetic and electric field components.

Wave impedance is defined as a ratio of electric to magnetic field
components. For a plane wave that ratio is 120q ohms or approximately 377 ohms.
Near to current loop type sources the wave impedance is very small compared to
377 ohms because the magnetic field is large relative to the electric field.
Near to linear dipole type sources the wave impedance is very high compared to
377 ohms because the electric field is large relative to the magnetic field.
Wave impedance of the energy incident on a shield is a critical factor in
determining whether or not the shield will be effective in excluding the signal.

Tt turns out (as will be seen) that it is much more difficult to shield "low-
impedance" magnetic-type waves than to shield either "high-impedance" electric-
type waves or "normal-impedance" plane waves. Shielding against low-impedance
waves is particularly difficult at low frequencies.

A rough guideline for separating sources into "nearby" and "distant"
types is to consider it a nearby source if it is closer than one-tenth of a
wavelength to the shield. At 100 KHz, I MHz, 100 MHz, and 1 GHz one-tenth
wavelength is approximately 1000 feet, 100 feet, 1 foot and 0.1 feet, respec-
tively. Thus, for frequencies up to about 1 GHz, one-tenth wavelength is a
relatively large distance compared to the size of modern circuits and "near
fields," at least from other on-board equipment, may cut across several
circuits.

Practical shields seldom have shielding effectivenss greater than 100
dB. Metals are in general good electromagnetic shields. Shielding effective-

ness of a metal structure is degraded by the presence of fabrication seams and
joints, access doors and windows and other apertures. A metal aircraft with
the usual apertures seams and cracks will have an effective overall shielding
of the order of 20 dB at UHF frequencies. Commonly used composite materials,

2



composed typically of small, relatively poorly conducting fibers embedded in an
insulating matrix, provide considerably less shielding particularly at lower
frequencies. Metal matrix composites and insulating matrix composites with
metallic fibers are being studied, and from the point of view of electromag-
netic shielding such materials would clearly be superior.

3. SHIELDING THEORY

Shielding effectiveness (S.E.) is an exceptionally difficult quantity to
evaluate for a given material because S.E. dpends not only on intrinsic material
parameters but also is a strong function of shield geometry and of both inter-
nal and external environments of the shield. In actual situations internal
and external shield environments are usually complicated and time varying (e.g.,
internal-personnel and equipment inside an aircraft; external-aircraft in
hanger, on runway, in air). In addition real shields have a variety of seams,
joints and apertures that generally degrade shielding effectiveness. Approxi-
mations are necessary in order to reduce a shielding configuration to a
manageable electromagnetic boundary value problem.

Plane wave shielding theory has long been used as an aid in character-
izing materials and providing a baseline measure of shielding effectiveness.
In this report plane wave shielding theory is extended to several classes of
anisotropic materials and recast in the very useful scattering parameter format.
Coupling mechanisms that degrade instrinsic shielding are briefly described.

3.1 Plane Wave Normally Incident on Infinite Flat Plate

The manner in which an electromagnetic shield transmits plane electro-
magnetic waves has been shown [2] to be analogous to the manner in which a
conventional transmission line transmits electrical current and voltage. An
idealized configuration consisting of a plane wave normally incident on an
infinite flat plate shield, as shown in Figure 1, provides a useful baseline or
reference value of shielding effectiveness, It also serves as a surprisingly
good approximate model for a number of more complex configurations that are used
for laboratory evaluation of shielding effectiveness. As a first step it is
assumed that the shield material is honmogeneous and is isotropic in the plane
of the shield. This hypothesis obviously includes the usual metallic shields
but it also appears to include multilayer graphite epoxy laminates in which
the layers are oriented at different angles (e.g., 0-90*-0). Unidirectional
laminates and perhaps even multilayer, mixed orientation boron laminates require
a different hypothesis taking into account the three-dimensional anisotropy
effects. The less complex behavior of the multilayer, mixed-orientation
graphite laminates arises from the fiber-to-fiber contact between layers. The
more complex unidirectional layer configuration has also been modelled and is
discussed in Section 5.3 of this report.

Using the well known transmission-line analogy [2] of plane wave propa-
gation as shown schematically in Figure 2, all types of 2-port representations
[3] may be utilized to represent the shield. The "Z" and "ABCD" parameter
representations have been widely and successfully used in the past. Scattering
("S") parameters [4] offer in many instances distinct advantages such as ease

3 1



of automated measurement and direct interpretation in terms of transmitted and
reflected components. Scattering parameters are treated in Chapter 4 and

applied to multilayer anisotropic shields in Chapter 5. The scattering param-
eter approach is equally valid and easy to use for the isotropic, homogeneous
shield. However, to facilitate comparison with certain classical results, the
immediately following analysis is carried out in terms of ABCD parameters. A
simple scheme for conversion to S-parameters is given in Section 4.3. The
computer programs used for numerical evaluation of shielding effectiveness use
a combination of multiport ABCD and scattering parameters.

Figure 3 (a-c) illustrates the details of the schematic representation
of plane wave propagation via the transmission-line analogy. Proper choice of
the source and load wave impedances (Z and Z L) permit this model to be used
even when the incident wave is not a pfane wave, e.g., in the near field of a
loop of current. This technique is illustrated for a two-loop measurement
configuration in Section 3.2. The basic procedure is to analyze the trans-
mission line model to determine its total insertion loss. That insertion loss
is then the same as the shielding effectiveness of the shield modelled.

The overall ABCD matrix for the shield with the effects of the output
medium included is obtained as the product of the matrices for the individual
components and is given by:

wL

T DT Z wL w

where A = D = coshO and n= v/i = intrinsic wave impedance

B = n sinhO 0 = yt = electrical length

C = I/n sinhO y = propagation factor

= permeability

c = permittivity.

Thus,
[ V [ A T  B T] VL ] (2

[2= Kwhere IL = 0. (2)
1  C T  D T -I L

i r i

V= V1 + V= VI(1 + Qin) (3)

Vii r 1 (
Ii = Ii + I = (1 - in

ws
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_1. =--..... =.._.. ... =.. ..... .. Reflection

in Zin + Z V1  AT + Z
in ws +Z T ws Coefficient
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where Z is the input impedance to the 2-port and other circuit quantities are
defined in Figure 3.

Substituting from equations (1) and (3) and (2) and solving for

V 1
V and I-I.- yields:

2 2 z (4)

1 Z zI = J[ + -- coshO + [+ "inh'i
V 2 Z Z

2 WL, wi

= Reciprocal of the electric shielding ratio
- I i Zw Zwl'1(5

I _ i {[ + I] coshO + [--L + sinh' 5

12 ws ws
Reciprocal of the magnetic shielding ratio.

Then,

Magnetic Shielding Effectiveness -20 log 12 (6nd)

11

V .
Electric Shielding Effectiveness = -20 log -4[. (7)

10 1

Notice that magnetic and electric shielding ratios are identical if

Z = ZL, i.e., for Z = Z = Z , the inverse ratios are
ws wL ws o

i i
V -I Z

- = coshO + 1 Zl + 0q ()

2 2 o

By proper choice of Z . and Z to match the incident wave characteris-wL w.

tics, it is possible to use equations (4), (5), and (8) as very good approxi-

mations to a number of other more complex shielding configurations. Physically

this is true because the wavelength is typically much smaller within the shield

material than outside. In most shield configurations shield thickness is small

compared with shield radii of curvature, and to the characteristics of sources

utilized in certain measurement structures.

Multilayer shields are easily handled by using the cascading property of

ABCD parameters as shown in Figure 4. Having obtained the effective ABCD

parameters of the multilayer shield, equations (4), (5), and (8) are used as
before to evaluate the various shieldin requirements.
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The plane wave shielding given above is used as a "reference" through-

out this report. Each new configuration is, where possible, mathematically

related to the reference plane-wave configuration. For example, as will be

shown, it is possible to relate both transfer impedance and two-loop/flat plate
data to the above model.

The transmission-line model of isotropic shields can be extended to

handle plane waves incident at oblique angles [5]. The required modification

is straight forward, and only the characteristic impedance and propagation
factor must be changed.

3.2 Coupling Mechanisms

Four basic coupling mechanisms [6] degrade the performance of a shield.
The mechanisms are skin diffusion, aperture coupling, joint coupling and TEM

penetration.

Consider a solid (no apertures, seams, etc.) shield. An impinging
electromagnetic field establishes a current density on the exterior surface of

the shield. That current density penetrates by diffusion to the interior
surface of the shield where a tangential electric field is establsiehd. The
proportionality factor between the interior tangential electric field and the

exterior surface current is called the surface transfer impedance. The overall
electromagnetic energy transfer by this mechanism is called skin diffusion.
Skin diffusion is controlled by proper choice of material thickness, conduc-

tivity and permeability.

Aperture coupling occurs as the result of an external field exciting

holes, cracks, windows or other openings in the shield. The field established

in the aperture by the external field then couples to the internal region. The

effects are typically difficult to calculate exactly for a variety o reasons
including strange aperture shapes, complicated and changing interior and exte-
rior environments. Computer programs such as IEMCAP use shape approximations

and other idealizations to predict aperture response. Aperture coupling is

controlled by proper use of screens, metallic coatings, rf gaskets, etc.

Well formed joints in shield materials (i.e., joint' of uniform construc-

tion and good electrical contact without large apertures or cracks) may still

provide a coupling mechanism via the change in surface impedance experienced in
crossing the joint. Such joints usually are described iU terms of a distributeJ
joint transfer admittance per unit of joint width.

TEM penetration is the result of induced currents propagating along

wires, cables, antenna feeds or other conducting paths into the shielded area.

These currents are transmission-line-like currents (hence the name TEM). This
mode of coupling can cause further problems by the induced currents generating
a field along the wire which may at a distant point induce other troublesome
currents in some circuit thought to be well shielded.

3.3 Two-loop/Infinite Flat Plate Configuration

This configuration (Figure 5), with the two loops parallel to the flat

plate having a common axis and spaced such that the flat plate lies in the neac

10
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field of the loops, is closely related to several popular and useful configur-
ations for measuring the shielding effectiveness to low-impedance waves. The
low-impedance (magnetic field dominates) waves as viewed at the flat plate
result from being in the near field of the loops. Note that the wave impedance
of the impinging wave varies over the surface of the plate as a function of
distance from the source. If the coil-to-plate spacing is a small fraction of
a wave length, most of the energy is concentrated within a narrow zone under
the coil so that in approximate representations a constant source wave impe-
dance may be used with little error.

Shielding data from configurations of this type for fiber-reinforced
laminates have simple interpretations only for materials which are essentially
isotropic in the plane of the flat plate, e.g., for multi-layer, mixed orien-
tation graphite laminates but not for unidirectional samples. This restriction
is a consequence of the need for roughly circular currents to flow in the plane
of the flat plate if the incident magnetic field (which is largely perpendicu-
lar to the plate) is to be terminated.

Configurations for which the two-loop/infinite flat plate configuration
serves as a useful approximate model include a variety of box-like structures
[6] with the flat plate shield forming a partition and undesired leakage
between loops inhibited by the enclosure. Such configurations are typically
used at frequencies below 100 MHz. Care must be taken, however, since box
resonances can obscure the shield's properties.

Moser [7] and Bannister [8, 91 have provided an integral equation solu-
tion for the shielding effectiveness of the two-loop/infinite flat plate
geometry assuming uniform current in the loops. It is assumed that the shield
is a good enough conductor that displacement currents in the shield can be
neglected. The complete expression for shielding effectiveness as given by
Bannister is given in Appendix A.

TairAs shown in Appendix A, if it is assumed that r' < , T rt > 2,r'20 'r

T r' > 10, -r - 10, z >. t and z "-1 a, where the quantities are defined in
r 

r

r

the appendix, then

T Z
S.E.dB 8.686'2 T t + 20 log (9)

r 1g0 (8.485 pr

This equation can be shown to be of the same form as the plane wave
shielding equation provided an appropriate near-field value is used for the
source and load wave impedances. Equation (8) for plane wave shielding can be
cast in the well-known Schelkunoff form 2 1 using the following parameter
definitions

Z (k_- 1 2o k-i4k
k pat q (8) c he w 2 (q!p)(k + 1)

Using the above parameters equation (8) can be written as:

12



Inverse Shielding = q-20)(i
Ratio p

Shielding effectiveness is then:

S.E.dB = 20 log 0  ( q - -2q ) 01 . (12)

For the present situation, using Z. = jw~.o r and recognizing k >> 1, it

follows that q = 1 and 1 - k/4. Furthermore, for T t > 2, the term
2e p r

20 log10 11 - qc- is negligible. Thus, equation (12) becomes

S.E.dB 8.686,r Trt + 20 log1 0 {2.- j  (13)

Following-Moser, to compensate for the fact that the near field charac-
teristic wave impedance is actually not constant over the shiled, let rI = z/3.
Then equation (13) becomes identical with the simplified Moser formula of
equation (9). This indicates that under a class of important measurement
conditions the plane-wave shielding equations with appropriate source and load
wave impedances yield excellent results. The transmission line analogy thus
applies to the configurations discussed in Sections 1.3.1 and 1.3.2. Frequent-
ly a symmetric arrangement with r1 = r2 = z/2 is utilized in measurements.

3.4 Quasistatic Shielding Formulas for Electrically Thin-Shell Ellipsoids

The boundary value problems for certain ellipsoidal-shell shields
geometries as shown in Figure 6 have been solved and the corresponding magnetic
shielding effectiveness calculated [9]. Following King, formulas for each of
the ellipsoidal and degenerate ellipsoidal shielding formula, can be obtained
in the same form as the plane wave shielding equations. These formulas are
useful in interpreting measured data from flat-plate and quadrax structures as
well as spheres and closed cylinders. Using the notation developed for the
plane wave shielding to low-impedance impinging waves can be placed in the
form

Inverse Magnetic cosh 0 + M

Shielding Ratio n "

A similar relationship can be derived for high wave-impedance impinging
signals. The equation is of the same form as the above case but with a
different wave impedance for the impinging signal.

Inverse Electric cosh 0 + E
Shielding Ratio 2i(

Equation (15) is different from that given by Boeing [ 6] but reduces to the
Boeing form as a special case.

13
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3.5 Surface Transfer Impedance and Effective Conductivity

Surface transfer impedance has been used for many years as a measure of
shielding effectiveness. Combined with other "two-port" parameters it can also
be used to characterize shielding materials in computer-aided analysis programs
for determining interior and scattered fields of complex geometrical structures
[101. For shields which are thin compared to the radii of curvature of the
shield and for which wavelength within the shield is much smaller than that
external to the shield, the electromagnetic behavior of the shield is essen-
tially a local phenomena. Each local region may then be considered planar [2].
For a planar shield, the two-port parameters are given in Figure 7.

The impedances Z and Z are known as surface transfer impedances
since they relate field values a opposite interfaces of the shield. Surface

transfer impedance is frequently measured using triaxial or quadraxial config-
urations (6] and the data are reduced using the Schelkunoff theory (2]. NoLice
that for electrically thin samples (i.e., small 0) cosh 0 _1 and
Z 1 Z22 = Z12 = Z = T csch e. Thus, for electrically thin shields a
measurement o the iansfer impedance completely describes the shield. For
electrically thick samples Z and Z are not approximately equal to Z12 and
additional measurements are required to totally characterize the shield.

From Figure 7 surface transfer impedance written with the new symbol Z
becomes:

Z =q csch 6 (16)tr

Surface transfer impedance can be related to the two-loop/flat-plate
configuration through use of the approximations for Equation (9) or the
equivalent Equation (14) as follows

Inverse Magnetic = R s cosh 0 + ZM sinh (17)
Shielding Ratio sh(

sinh e 1 1
Substituting csch 0 Z yields

tr

ZM
R cosh 0 + . (18)2Ztr

Thus,

Z N (19)tr 2(R - cosh 6)

For good shields cosh 0 = 1 at low frequencies where 0 is small (i.e., the
shield is electrically thin) and at high frequencies R is much larger than
cosh 0. Thus, for reasonably good shields Z can be written in terms of the• r
shielding effectiveness measured in the two-ioop/flat-plate configuration as

15



El "E2 E 1 1H +H +Z 2 H 2

H1 = z2 1 1I + z2 2 H 2

owhere 
z 1 z 22 = n coth 0

z12 z21 = n csch 0

0 = yt

-. j- n = wave impedance of shield
tY = propagation factor of shield

Figure 7. Two-port Impedance Representation

Note: H and E directions assumed cause

propagation toward the shield from

both left and right side of the

shield
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Z M(20)
tr 2(R - 1)

where R is obtained from the shielding measurement as

SE dB)

R= 10

At frequencies where the shield is electrically thin so that (, is
sufficiently small that sinh 0 can be replaced by 6, it is possible to deter-
mine an effective conductivity directly from Z in a very simple manner.tr
Such scalar conductivity numbers, as mentioned earlier, seem meaningful for
multi-layer, mixed orientation, graphite laminates, but not for unidirec-
tional graphite laminates. Assuming a scalar effective conductivity G ff in
the plane of the laminate and recognizing that for reasonnbly good con uctors

y (1 + ) feff eff0 '

then

+ +j) 
f

eff. . . (21)Ztr sinh e sinh 1l + j)t -f eff

For small e3, sinh 0 e , so that

(1 + Dj)fl

Zaeff 1
tr t(1 + J)V/Tflju eff C eff t"

Thus, for small 0

ef 1- (23)
Teff tZ tr

For larger 0, G can be obtained by solving the transcendental equati-n

Z sinh 0 - n = 0 (24)
tr

The phase of Z has not been measured in past experiments, but would
clearly be needed if r were to be used to characterize a material in systemtr
analysis programs.

The form of the approximation given in Equation (23) is in excellent
agreement with measured data given by Boeing (61 with varying thickness.
Calculated conductivities seem to be in agreement with results from
measurements by other techniques discussed in Sections 2.0 and 3.0.
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As an example of the correspondence between two-loop/flat-plate measure-
ments and surface transfer impedance measurements, consider the 24-ply T-300/
5208 graphite samples measured by Boeing [6]. The samples were cross-ply

layups (00/450/900).

At 1 MHz the measured magnetic shielding from the two-loop/flat-plate
configuration is M.S.E. = 16 dB. Thus, R - 100.8 = 6.31 and for a loop-to-

plate spacing of I inch and 1ZMI = jWo b I = 0.201 ohm.

Then

ZM 1 0.201 -2
r 2(R - 1) 2(5.31) 1.9xl0 ohm

as calculated from the two-loop/flat-plate measurement data. The corresponding
1 MHz direct measured value of surface transfer impedance is

-2
!tr 1.8 x 10-  ohm
tr

as measured in the quadrax configuration. The agreement is excellent.

For the same material at I MHz

1 = 1 -2 1.73 x 104 mhos/m
teff Zt (1.8 x 10 )(24 x 5.25 x 10 x 2.54 x 10- )

for T-300/5208 Cross-ply layup at 1 MHz.

Similar calculations for 12-ply HTS/5208 graphite show excellent agree-
ment between flat-plate and quadrax data and indicate

Ceff 1.5 x 104 mhos/m

for HTS/5208 cross-ply layup at 1 MHz.

3.6 Transverse Flat Plate Samples in Waveguide and Transmission Line
Structures

Transmission loss and phase measurements on a flat plate sample com-
pletely filling the transverse section of a waveguide or transmission line
structure can be utilized to characterize a material electromagnetically [111.
Provided the reflections from the sample are not too large, conductivity and
permittivity can be determined analytically from the measured insertion loss
and phase. Reference [11] provides a complete discussion on limitations of
the solution procedure. Typical arrangements for rectangular waveguide and

coaxial line structures are shown in Figure 8. The analysis of these and other
structures can be carried out simultaneously through the use of the generalized

transmission line analogy 121.
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3.6.1 General Case

Following Schelkunoff's procedure [2], let each section of the measure-
ment structure be represented by a section of generalized transmission line.
The geometry being discussed is shown in Figure 9. The characteristic imped-
ances of the equivalent transmission lines are interpreted as the wave
impedance of the actual structure. Equivalent transmission line propagation
factors are equal to the corresponding factor of the real structure.

From Figure 8,

= V(25)

where

IQ =  Q/20 3  e = yt

=cosh 0 = Z02 sinhO

sinh E) = cosh 0.
Z0 2

From equation (25), it can be shown that

IQ -z02 (2A)

Ip Z 2cosh 0 + Z 3sinh (

V z 0 3

Vp Z3cosh 0 + Zo2 sinhO (27)

Let the total impedance at P looking toward Q be equal to Z (note, Zp
includes effects of both interfaces). Then,

2Z

Vp = T V. = + p V. (28)
P vi Z0 1  P

2Zo

Ip =TI = I°0 1  (29)
I i Z01 + Zp

where Vi, Ii are the incident voltage and current, respectively, and
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= Z03cosh 0 + Z 02sinh ( V p
2= Z023o 0 + Z03sinh 0 

=  " (30)

Replacing cosh 0 and sinh 0 by their exponential equivalents and sub-
stituting from Equations (26) to (30) into Equation (25), the following result
is obtained (after considerable algebra).

-I (1 + Qvp)(l - v Q)F
-

T =, q (31)TI I. -20 (1
I i - Qv,PPv,QC

where TI = overall current transmission coefficient across the section PQ

zol -z 02
,P =Z01 + Z02 interface voltage reflection coefficient at P

Z01 -02

Pv, Z0 3 + 02 interface voltage reflection coefficient at 0.

V,Q z 0 3 + z 02

It can be shown that the overall voltage transmission coefficient across the
section PQ is

VQ _ 03
TV = Z01 T . (32)

If structures 1 and 3 are identical then

(1 - 2-(

TT= T = (33)

V

where

fv = z + Z
01 02

Insertion loss is thus

I.L. = -20 log10 Tj (34)

and the insertion phase is

A= LT = Angle of Transmission Coefficient
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Given measured values of insertion loss and insertion phase for a
specified structure, Equation (33) can be solved for the conductivity and the
real part of the permittivity of the material under test. This procedure is
demonstrated in Section 3.6.2 for a rectangular waveguide measurement system.

3.6.2 Rectangular Waveguide

As a particular case of the preceeding analysis, let the transmission
structure be TE rectangular waveguide with region 2 consisting of a section
of guide of widtR "a," height "b" and length "t," totally filled with the

material under test. Further assume that the material can he represented as a
lossy dielectric with vi = o , C = 0 c' (1 - jtan6). Tan 6 is the loss tangent
of the material and c' is tRe real part of the permittivrity. Regions 1 and 3

rare air-filled and have the same width and height as section 2.

Z I . . Wave impedance of regions I and 3 (36)

TE Ao 2

2 r2 1

ZT = ,"2 'r --- .. Wave impedance1-E- 22 cf region /A (37)

C)

22 __2

r = r (I -jtan6), A2

r

0 = wavelength in freespace at measurement frequency

Ac= cutoff wavelength (e.g. 2a in air-filled waveguide)

Also, -

TE TE
v 1 2 (38)

TE TE

C = y t W, Pwj7 C'7 CT
00 r (-) t. (39)

Substitution into Equation (33) yields the desired result.
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Given measured values of insertion loss and phase, Equation (33) can
now be solved for E' and tan 6. The conductivity, a. is related to the loss
tangent, tan 6r

, byro = WEE tan 6. An iterative numerical procedure 112] is
used to solve Equation (33Y. ° For relatively high conductivity, materials such
as graphite epoxy, insertion loss and phase are quite insensitive to variations
in 0', as shown in Figure 10. It is then exceptionally difficult to determine

r
accurate values of C' from measured insertion loss and phase by solving Equa-
tion (33). If c' is independently known, accurate conductivity values can be
obtained. r

4.0 Scattering Parameter Techniques

The ease with which scattering parameters can be measured [4, 131 makes
them especially well suited for describing distributed circuits and most
electromagnetic propagation problems. The simple direct relationship between
scattering parameters and transmitted and reflected power is an added advantage
in interpretifig results.

4.1 Definitions

Generalized scattering parameters have been defined by K. Kurokawa [2,
14). These parameters describe the interrelationships of a new set of
variables (a., b.). The variables a. and b are normalized complex voltage
waves incident on and reflected from the itA port of the system. They are
defined in terms of the terminal voltage Vi, and an arbitrary reference imped-
ance Zi, as follows:

V. +Z.I.

a = (40)

ei

V. - Z.I.
b -=1 1 (41)

e 2Reil

where the asterisk denotes complex conjugate.

For most measurements and calculations it is convenient to assume that
the reference impedance Z. is positive and real. For the remainder of this
report, all variables and parameters in scattering analysis will be referenced
to a single real impedance R. . Other normalization schemes are useful in
some cases. Generalized normalization is discussed in the literature [2, 14].

The quantities used in defining S-parameters for a 2-port system are
shown in Figure 11. The independent variables a and a are normalized inci-
dent voltages (or the corresponding analog quaniaity) f

1 1 + IIR0 voltage wave incident on port 1 V //R 0  (42)

0 0
(42)
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r

Figure 10. Insertion loss and phase delay for a lossy transverse
slab in L-band rectangular waveguide, t = 0.02 inches,
a = 104 mhos/m. Loss and phase are both essentially
independent of C'.
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a 2 20 voltage wave incident on port 2

2 -RW
0

Vi2i2 (43)

v'R-
0

Dependent variables b and b2 are normalized reflected voltages:

- I R Voltage wave reflected V

b V 1 1 0 (or emanating) from port 1 ri (44)

0 00

- I R Voltage wave reflected
b - 2R0 (or emanating) from port 2 r2 (45)
2 v 045

0 00

The linear equations describing the 2-port are of the form:

-4 -* -*

b = S a or

b I = Sl aI + S12a 2  (46)

2 = S2a I + $2a2 (47)
2' 21 a1 22 247

The S-parameters SlIl S12' $21 $22 are:

bl Input reflection coefficient with the

S1 a 1 output port terminated by a "matched" (48)

a 2=0 load (ZL = R0 sets a2 = 0).

b Output reflection coefficient with the

$22 2 = input port terminated by a "matched" (49)
l02 load (ZS = R0 and VS = 0).

b 2 Forward transmission (insertion) gain
2 2 = (or loss) with the output port (50)
21 a1 a 2=0 terminated in a "matched" load.

b I  Reverse transmission (insertion) gain
S12 a = (or loss) with the input port (51)

a2  terminated in a "matched" load.
a,=0

26
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The relationships between a,, a2, bl, b 2 and the various power waves of

interest are given byi2
aI 11 = Power incident on the input port

= Power available from a source of impedance R20

ja2  = Power incident on the output port

= Power reflected from the load

lb1 1 = Power reflected from the input port

= Power available from a R0 source minus the power delivered to

the input port

2
b I = Power reflected or emanating from the output port

= Power incident on the load

= Power that would be delivered to a R0 load

Hence S-parameters are directly related to power gain and mismatch loss,
quantities which are often of more interest than the corresponding voltage
functions:

Sl 2 = Power reflected from the input port
112 Power incident on the input port

Is212 = Power reflected from the output port
Power incident cn the output port

2 Power delivered to a R0 load

Is211 = Power available from a R0 load

= Transduce power gain with R0 load and source

2
Is 121 = Reverse transducer power gain with R0 load

and source.

4.2 System Calculations with Scattering Parameters

Scattering parameters are particularly convenient in calculating trans-
mitted and reflected power or related quantities such as shielding effectiveness.
The transfer parameters S12 and S are a measure of the complex insertion gain,
and the driving-point parameters l and S are a measure of the input and

paaetr an
output mismatch (i.e., reflection)1 loss. As dimensionless expressions of gain
and reflection, the parameters not only give a clear and meaningful physical
interpretation of the system performance but also form a natural set of param-

eters for use with signal flow graphs [15]. It is not necessary to use signal
flow graphs in order to use S-parameters, but flow graphs greatly simplify
S-parameter calculations.

27



In a signal flow graph each port is represented by two nodes (one for
each variable). Node a represents the wave coming into the system at port n
and node b represents Phe wave leaving the system at port n. The complex
scattering coefficients are then represented as multipliers on branches

connecting the nodes within the system and in adjacent systems. Figure 12
sunmarizes the above statements and presents the flow graph representation of
the 2-port system shown in Figure 11.

The simplification of system analysis by signal flow graphs results
from the application of the "non-touching loop rule" as described in [15] and
summarized in Figure 13. A first order loop is defined as the product of the
branches encountered in moving from a node in the direction of the arrows back
to that original node. A second order loop is defined as the product of any
two non-touching first order loops. Nontouching loops have no nodes in common.
An nth order loop is defined as the product of any n non-touching first order
loops. This rule applies the generalized formula of Figure 13 to determine the
transfer function between any two nodes within a system. The non-touching loop
rule is applied to calculating the transducer power gain of a 2-port system in
Figure 14.

Cascading of 2-port systems is easily accomplished through use of signal
flow graphs and the S-parameter definitions given in Equations (46-51). The
cascading is easiest if done 2 systems at a time. This process and the result-
ing combined S-parameters are illustrated in Figure 15.

4.3 Parameter Relationships for Two-Ports

It is convenient at times to be able to convert between the various
parameter representations for 2-port networks. The equations below provide
those conversion relations most useful in shielding analysis. Other conversions
are in the literature [3, 4].

4.3.1 Z to S

Given a normalized impedance matrix

IZ l  Z12

Z :: Z2 (52)

the corresponding S-matrix is
S 21 Z 22

s = (53)

where
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* EACH VARIABLE BECOMES A NODE.

* EACH PARAMETER BECOMES A BRANCH.

* BRANCHES ENTER DEPENDENT VARIABLE NODES AND EMANATE FROM
INDEPENDENT VARIABLE NODES.

* EACH NODE IS EQUAL TO THE SUM OF THE BRANCHES ENTERING THAT
NODE.
b1 1 1 a1 +S 12 a2  b2=S21a 1 + S22 a2

a1  a1  S2,

$11 S2 2

= 0

b, S12 a2 a2

Figure 12. Flow Graph Notation
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NONTOUCHING LOOP RULE

T= P1 [1- XL (1)(1) + L (2)(1) - XL (3)(1)+. -
. + P 2  1 - 2L (1)(2) +

I Z L(1) + EL (2) - Z L (3) +. .

WHERE

I L (1) SUM OF ALL FIRST ORDER LOOPS.

1 L (n) SUM OF ALL nth ORDER LOOPS.

P1; P2 ; etc. PATHS CONNECTING VARIABLES IN QUESTION.

!L (1)(1) SUM OF THOSE FIRST ORDER LOOPS WHICH DO NOT TOUCH PI

!L (n)m SUM OF THOSE nth ORDER LOOPS WHICH DO NOT TOUCH Pmo

T RATIO OF DEPENDENT TO INDEPENDENT VARIABLE.

INPUT IMPEDANCE OF A TWO-PORT WITH ARBITRARY LOAD

a2

S2S 1 1 (1-S22"L)+S21 ILS12
S1

bi S1 1 (1 -=
2 L 2 LS

" 1 1 - S22 "L

I 21 S12 1 L

1 - $22 1"L

Figure 13. Nontouching Loop Rule for Use in Evaluating
Transfer Functions
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S21

Ps S22 rL

S12

b -- a2

GT PdelTO LOAD = 1b2 12 (1-1rL12 )
Pavaid FROM SOURCE Ibs 2

1l-lrsl2)

b2  S21
bs 1-$11 s - S22 'L - S21 S12 rL rs + S1 s S22 rL

GT - IS21 2 (1 - I Isl2) (1 - IrL 2 )
,:. I(1 - S11 r s ) (1 - S22 r L )- S21 S12 r L rs 2

Figure 14. Transduce Power Gain Calculations
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Figure 15. Cascading "S" for Multilayer Shield
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- Z 11 (Z22 + 1)

Z + 11 + Z22 + 1

2Z12
S1 = _ _ _ _

12 z + Zi1 + Z 2 2
+ 1

2Z21

21 +Z + 11 + Z22 + 1

SAZ+ Z22 - (Z1 1 + 1)

22 A Z + Zl1 + Z22 + 1

AZ =  11ZZ22 - Z12Z21

4.3.2 ABCD to S

Given a normalized ABCD matrix

--- = A B

ABCD = (54)
C D

the corresponding S-matrix is

S 11 S  
S12 !

sw (55)
$ 21 S 22

where

= A + B - C- D11I A + B + C + D

= 
2 ACH

12 A + B + C + D

2
21 A + B + C + D

-A+B-C+D

22 A + B + C + D

A AD - BC.
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4.4 s ttor Sv n.-

Scattering paramc.ter analysis is easily extended to multiport systems.
For a 4-port system the scattering equations would be:

b1  Sl1 S12 S13 S14 a1 1

b2 S21 $22 $23 *24 a2
(56)

b3 31 32 33 34 a3

b S S S S a
4 S41 S42 S43 '44 4

where

Sbl = Input reflection coefficient
S] a at port 1 with matched load at

la 2=a 3=a 4=0 all other ports.

S b2 Forward transmission (insertion)
21-aa gain (or loss) with ports 2, 3,a2=a3=a 4=0 4 all terminated in matched loads.

etc.

The extension to n-ports is straightforward. Multiport techniques are necessary
in treating shielding effectiveness of anisotropic shields.

5.0 An Anisotropic Model for Plane Wave Propagation (with Applications t(
Single and Multilayer Advanced Composites)

Advanced composite materials are laminates made up of a number of indi-
vidual layers bonded together. Each layer consists of a unidirectiona] array
of long fibers embedded in, and firmly bonded to a matrix. The basic building
blocks of any specific composite are the types of fibers and matrix involved.
Some fiber/matrix systems are: boron/epoxy, graphite/epoxy, Kevlar/epoxv,
graphite/polyimide and graphite/thermoplastic. Other materials contain grids
of various conductive wires.

The purpose of this section is to describe a macroscopic electromagnetic
model for plane wave propagation through fiber-reinforced and related materials.
It is convenient to distinguish between "ply" and "layer." A ply is the basic
composite material unit. A layer is made up of plies with uniform fiber
orientation. Thus, both plies and layers are unidirectional but a layer may
consist of more than one ply. In a multilayer structure, fibers in adjacent
layers have different orientations. A multilayer flat panel with arbitrarily

polarized incident plane waves is considered. The fibers in each layer may he
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oriented in any desired direction permitting both unidirectional and mixed-
orientation samples to be considered.

On a microscopic basis advanced composites are clearly both inhomogene-
ous and anisotropic. From a macroscopic point of view, the fiber spacings are
sufficiently close that over a wide frequency range (perhaps dc - 18 GHz) it
appears that the inhomogeneities can be averaged out, at least to first order.
The anisotropic nature, however, of a unidirectional sample must be taken into
account. For mixed orientation, multilayer samples the anisotropic effects are
important unless the layers are so thin electrically that considerable layer-
to-layer averaging occurs.

Based on the above discussion, it appears reasonable to model each layer
as a "quasi-homogeneous" anisotropic material. Both fiber and matrix materials
currently under consideration are nonmagnetic so that the permeability of these
composite materials can be taken to be essentially p • Both permittivity and
conductivity parameters may be anisotropic. It is assumed that the principal
axes of the permittivity and conductivity properties are the same so that both
the permittivitY and conductivity tensors may be diagonalized simultaneously.
As a lab or saving device the usual combination of conductivity and permittivity
into a single complex permittivity tensor is assumed. Two sets of coordinates
are utilized as shown in Figure 16. The x, y, z coordinates are the "propaga-
tion coordinates," and all the final equations are expressed in terms of xyz-
components. The %I coordinates are called "material coordinates." The
material coordinate axes are aligned with the principal directions of the
composite material.

Analytically it is possible that the "material a.es" r, r2 3 within
each layer be skewed with respect to each of the "propagation coordinate" axes
x, y, z. Physically, however, a laminate is made up of parallel layers with
the fibers of adjacent layers lying in parallel planes but having different
fiber orientation within the plane, i.e., the material coordinate C will
usually coincide with z in every layer of a multilayer sample, while the direc-
tion of i' 2 with respect to x, y varies from layer to layer.

5.1 Unidirectional Samples

Consider a unidirectional flat plate of advanced composite material.
The principal directions (along the fibers, perpendicular to the fibers but
parallel to the plane of the layer, and perpendicular to both the fiber direc-
tion and the plane of the layer) are used to define "material" coordinates.
Let rl be parallel to the fibers, I- perpendicular to the fibers but parallel
to the plane, 3 perpendicular to both fibers and the plane of the layer. In
these coordinates the complex permittivity matrix is diagonal with each of the
three components, in general, different.

1  C2  (3

C £ 0 0
4 11' '(57)

1 0 0
= 2 ~ 22

0 0 i !
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Figure 16. Propagation (x, y, z) and Material (4 ~ 4)Coordinates for

Treating Anisotropic Material with "OpticAxis" in z Direction.
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1a.

wherec.. =C -j -i

In terms of r1, C2' the complex permittivity tensor E is diagonal.
++ 3 . aii

The individual elements of c, namely C = ci - j - , can be measured or

calculated for a single unidirectional sample of each fiber/matrix combination.
The matrix in each case is normally a good dielectric while the fibers vary
from modest conductors (graphite) to poor dielectrics (boron) to good dielec-
trics (Kevlar). Thus, the relative importance of c.. and a.. in the complex
permittivity K . is a function of the fiber/matrix cmbinatin and frequency.

5.2 Wire Grid Model

Prior to detailed analysis of the rather complicated anisotropic model
for fiber-reinforced materials, it is instructive to examine some less compli-
cated geqmetries [161 to perhaps determine some of the dominant features of
shielding to be expected from such materials. Consider an array of infinitely
long, identical, parallel, perfectly conducting wires as shown in Figure 17.
This is, admittedly, a very crude model, but it is useful in illustrating an
important point. Let the wires have a diameter D, and a spacing, S, and let a
plane wave having wavelength, X, be incident normally on the grid. The inci-
dent electric field may be polarized either parallel (i.e., E ) or perpendicu-
lar (i.e., E ) to the axis of the wires. The equivalent circuit of the grid
as seen by the incident wave is given by Marcavitz [17] and is shown in Figure
18. When S/X<< 1 the circuit parameters are:

Z = n -D + 0.601(- i) (58)

zX = S[-rD 2  (59)

Z 0  ASJ

B 3 [ 1 1 2 1. = 1 (60)
Y0  2At S J A2

Bb ]2 A [-- ; -  (61)
Y0 S trDj 1 A2

where

A, = 1 +- 1 n + l-2 
n -- +

1 2 A] I TD 41

+ Tf D 2 il1(7D 2
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Incident
Field

(a) Front View (b) Top View

Figure 17. Wire Grid Approximation of a Unidirectional
Fiber-Reinforced Material (After Bodnar
[161)

z xb z 
B b

Z0jX a Z 0 y0JB ajBa 0oa o 0o o

0 0O-0 0

(a) For Parallel (b) For Perpendicular
Polarization Polarization

Figure 18. Equivalent Circuit of Wire Grid at Normal
Incidence. (After Bodnar [161)
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and Z 0 and Y are the characteristic impedance and admittance of free space,
respectively.

Inspection of (58) and (59) shows that X and k approach zero as
becomes large, indicating that the inductor of PigureA8a shorts the trans-
mission line at low frequencies and little power is transferred through the
wire gril. Thus, the grid acts as an effective shield to parallel polariza-
tion at low frequencies. Inspection of (60) and (61) shows that B approachesa
zero and 'hat B becomes large as A becomes large. This indicates that the

bshunt capacitors in Figure l8b act as open circuits and the series capacitor
acts as a short as A becomes large. This corresponds to a large amount of
energy being transferred through the grid and shows that the grid is not a
good shield for perpendicular polarization.

How long do the wires have to be in order to obtain good shielding
characteristics for parallel polarization? What would the shielding charac-
teristics be if the infinitely long wires of Figure 17 were replaced by a two
dimensional array of short nontouching wires? The shielding characteristics
now turn out to be bad for both polarizations as will be illustrated below.
The conclusion clearly is that a large number of noncontacting fibers will not
provide good shielding. Long conducting paths (compared to wavelength??) are
necessary tor good shielding.

A model for fibers consisting of short, noncontacting plates is shown
in Figure 19. Analysis of such structures has been carried out by Chen [181
and Montgomery [19]. General equations are provided by both Chen and
Montgomery, but the equations must be programmed for a digital computer to
obtain numerical results. Sample calculations are presented by both authors,
but no general design information is given. The general trends indicate low
attenuation for both polarizations when the plate dimensions are small compared
to wavelength. A reasonable conclusion appears to be that noncontacting fibers
that are electrically small (i.e., much smaller than a wavelength in their
major dimension) do not provide effective shielding at RF frequencies.

5.3 Unidirectional Sample with Normally Incident, Arbitrarily Polarized
Plane Wave

Assume an infinite plane sheet of unidirectional material of thickness
t oriented perpendicular to the z-direction. Fibers are oriented in the
l -direction as shown in Figure 16. The , and z axes are aligned. The

direction of propagation of the incident plane wave is +z. The permeability
p is essentially equal to 10 . Permittivity and conductivity are combined in
the complex permittivity tensor given by equations (57). In material
coordinates there are two possible normal modes for propagation in each direc-
tion, + and -z. These modes are not coupled to one another and correspond to
polarization perpendicular and parallel to the fiber direction, respectively.
Using the transmission line analogy [21 the response to the normal modes can
be written in material coordinates as follows.
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Dielectric Sheet. (After Bodnar [16])
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For E parallel to the fiber direction (C)

cosho 1 ril sinhO 1 E 3+

= iF (62)
:§: I [)sinhO1 coshO1 L 2 (C3 + t)

where

t = kit

1

For i perpendicular to the fiber direction but parallel to the plane
of the sample (,2 )

E (- 3)] -  cosh o 2h r12s i nho2J [ E2 (3 + d)

-V1inhO 2  cosho H (3 +

where 02 = Wo 2o22 t =k 2t

1i
0

n2 = V/ 22

E I, Hr2, E2, H I are components of a single arbitrarily polarized

plane wave. It is convenient to collect these terms into a single 4-port
matrix equation relating tangential fields at input and output interfaces.
E and H terms are slightly rearranged in the new matrix. Note, there is
no coupling between the C and 2 polarizations.

E (C3 ) coshO1  0 risinhl 0 E 1 (3 + t )

E (C 3  0 coshO 2  0 ?1sinh( 2  E (C + t
C(63)

H() 1sinhO 0 coshO 0 HC2 (r3 + t)

-H 0 sinhO 0 coshO -H (C3 + t )
2 2 3
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To transform from components expressed in material coordinates to
those in propagation coordinates, it can be seen from the geometry of Figure

16 that

AI = A cos + A sin4
x y (64)

A =-Ax sino + A ycos

where A represents either an electric or magnetic field component. Substitu-
ting from equation (64) into equation (63) yields the following equation:

E ii coshe I  0 n sinhOI  0 E 01
i2 0 cosh1 2  0 2sinh2 Eo2 (65)

H. h1 0 cosh 0 Ho

sinh 2
Hi2 0 n2 0 cosh 2  Ho2

where

Eil = E (Z)cosO + E y(z)sinO

Ei2 = -Ex WsinO + Ey(z)cosO

Hil = -Hx zsin + Hy(z)cosO

H12 = -Hx (z)cos - H y(z)sinO

E = E (z+t)cosO + E y(z+t)sinO

So2 = -Ex (z+t)sin + E y(z+t)coso

H 0 = -Hx (z+t)sin4 + H y(Z+t)cos

He2 = -Hx (z+t)cos - H (z+t)sinO.

Algebraically manipulating equation (65) leads to equation (66) given below.

E x(z) Al1 A12 BI1 B2 Ex (z+t)

Ey(z) A21 A22 B21 B22 Ey (z+t) (66)

HCy(Z) 11  C12 D11  D1 2  Hy (z+t)

-H(Z) C21  C D D -H (z+t)
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whe re

2 2A11 = Dll=coshO1 cos2 4 + coshO2 sin2

A 2 2  D2 2 coshO1 sin + cosh- cos

A1 2 = A = D = D = sin cos (coshO1 - coshO2)
12 21 12 2112

B 11 l 1 sinhO1 cos2 + n 2  sin2

.2 2
B22 = l sinhO1 sin 2 ( + n 2 sinhO 2 cos

2 4

1 2 12
1  sinhG1 cos2 + - sinhO2 sin24

C22 =- sinhO sin2  + 1l sinh 2 Cos

22 Ti1  1 r12 2
B12 B 21 = sine cos (nI sinhO - 2 sinhO 2

1 1 ih0)

C12 21 = sine cost (I- sinhO - sinh)

Other quantities have been defined earlier. Notice that x and y polariza-
tions are coupled unless ¢ = 00 or 900. Thus, except for these two

special cases an x-polarized incident wave will produce both x and y
polarized reflected and transmitted waves.

A still more condensed equation results if matrix notation is further

exploited.

3E t(zJ+t) (67)

where
[here)E Transverseo {at(7

EXt() =Components of E at

LE(. either z or z+t
y__

FH('1 Transverse

(H = Components of H at

H x(" either z or z+t

and A =

LA21 A 2 2

B ~ etc.

L21 B221

and Aij, Bij, Ci ,Dij; coefficients were defined above. This 4-port

structure is illustrated schematically in Figure 20.
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5.4 Multilayer Samples with Normally Incident, Arbitrarily Polarized Plane
Waves

To analyze multilayer structures, construct for each layer taking

into account the different and c for each layer. Obtain the overall ABCD
matrix as the product of the matrices for the individual layers. Thus, for
a 900, 450, 900 multilayer sample

[I B A9 0° B901 A 5  B4 5] A9 0o B 90o

K_ +_ * L 4 5 0 (68)

L9 I o°  D9 0 j c4 5
°  D 45 c

90 D9°]6

The resulting ABDC matrix relates the "total" (i.e., sum of incident and re-
flected) fields at the input side of the sample to the corresponding quantities
on the output side. Most often the desired end result of such analysis is
various ratios of traveling wave (not "total") fields. To facilitate calcula-
tions such as determining power reflected, power transmitted, power converted
from one polarization to another, etc., it is convenient after the overall
ABCD matrix is computed to convert to scattering parameters [4]. Scattering
parameters provide direct relationships between the traveling wave quantities.
Clearly, scattering parameters or their transmission counterpart could be used
to describe each laver and then combined to provide the overall multilayer
matrix. However, the determination of the overall ABCD matrix and then its
conversion to scattering parameters is computationally much more efficient in
the class of problems being considered.

5.5 Scattering Matrix for a Multilayer Anisotropic Structure with Normally
Incident, Arbitrarily Polarized Plane Waves

Either normalized or unnormalized scattering parameters [4] may be used.
In many cases normalized parameters are a distinct advantage. At this point
there is little advantage to be gained from normalization and some danger of
confusion arising from the normalization process. Therefore, unnormalized
scattering parameters are used.

Let the fields on the input side of the sample be expressed as follows:

E x(z )  E Exi(Z) + E xr(Z)

Ey(z) =Eyi(z) + Eyr(z) (69)

H (z) = E *(z) + E (z) E W E W
Hy(z) = Hyi(Z) + Hyr(z) = l-s [Ex i (z) - Exr(Z)]

y yi yr ns xi xr

-H (z) = -[H (z) + H (z)] +1 [E (z) (z)]
x xi xr = Ts yi yr
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where rl = intrinsic impedance of input medium and the subscript i refers to
incideni traveling wave components while r refers to reflected or reverse
traveling wave components.

Similarly, fields on the output side of the sample are given in equa-
tion (70). Note, as is conventional in scattering analysis "incident waves"
travel towards the sample while "scattered or reflected waves" travel away
from the sample. This means that incident waves on opposite sides of the
sample travel in opposite directions.

SEx (z+t) = E xi(z+t) + E xr(z+t)

E y(z+t) = E yi(z+t) + E yr(z+t) (70)

Hy(z+t) = H y(z+t) + H (z+t) = -1[E i(z+t) -E (z+t)I
yyi yr fl 3  xi xr

-Hx(Z+t) = -[Hxi(Z+t) + Hx (z+t)] =-I-[E .(z+t) -E (z+t)]
xi xr n 3  yi yr

where n3 = intrinsic impedance of output medium.

If there are no sources on the output side of the sample, the incident
signals from that side will be zero, i.e., E . (z + t) = E .(z + t) = 0. It
is assumed that this is true in the followin analysis. Sustituting equa-
tions (69) and (70) into equation (67) and solving for the scattered or
reflected components in terms of the nonzero incident components yields the
following relationship. Note that since E .(z.+ t) = E x.(z + t) = 0, only the
first two columns of the scattering matrixYare required or this analysis.

E xr(z) SII S12 S13 S14 Exi(z)

E yr(z) S21 S22 S23 S24 Eyi(z)

E z = S(S71)
Exr(z+t $31 $32 S33 $34 0

Eyr(z+ t) $41 $42 $43 $44 0

where

BS =2 [A +21 _ s sr

S41 = A[A2 1 +--- sC 2 1 - 3 D 2 1]

1 = + [A + + + D

42 -AI + i3 sC1 1  D 1 1
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B22 sS 3 [A 22 1 + ___s D 2s = -2q Y -2 :2 + 3 -D
31 922 Tr,3  s 1 22

2 BI12 r]

S3 2  = --[A 12 - + s 12 3 Dn 1 2

B2  B 2
) \ _ )S + (A, 2  + B21) S41

s 1 =1 ( A + 3 - 3 q 3 $ 1

B,, 1  B2
S22 = [-1 + (A2  + _-_) + (A + ]_22)

1 )  32 22 rl3 42
B ll B 12
B11 B)1

S [-I + (A1  + _-_ S31 + (A + 12) S
111 1 12 r3 41

B 1 1  +B 1 2
S 1 2  = [(A11  + _ -) $ + (A 2  + _ 1_) S

1 3 r!3  42

B1 2  9 B21  n
I U (1 2 - -+ ' sC 1 2  - D 1 2 ) (A 2 1  + - D 21 )

3 3

B B T

-(A 1 + BlI + n + sD ) (A2  - 22 s 2 +
1 3 3  s l l 22 3 3  3s22

3s

Equation (71) can be used to calculate the quantities of interest in electro-
magnetic shielding problems. The procedure is to first calculate the total

4-port ABCD parameters for the multilayer sample, as indicated in Section 5.3.
The values of A.., B.., C.., D.. obtained are used in equation (71) to deter-
mine the overalliscaterin paarAmeters for the multilaver sample. Figure 21
and 22 illustrate shielding effectiveness calculated for some single-laver and
multilayer graphite epoxy shields. The value of C' is not critical for the
values of conductivity '.ciiized. Indeed varying r:, from I to al.,ut 100
has no noticeable effect on the shielding effectiveness. Figure 21 illustrates
the effect on shielding effectiveness of varying polarization of the wave
incident on a single anisotropic layer. Data is plotted for polarization
parallel to the fiber direction (t = 00), perpendicular to the fiber direction

= 90*) and inclined at 450 to the fiber direction ( = 45*). As would be
expected, much larger attenuation is experienced when the wave is polarized
parallel to the fibers. Figure 22 illustrates shielding effectiveness for
4-layer (0', + 45', 900) and 7-layer (00, + 450, 900, + 450, 0') structures.

The incident wave in each case is polarized parallel to the fiber direction
of the first layer.

5.6 Scattering Matrix for a Multilayer Anisotropic Shield with Incident
Plane Wave of Arbitrary Polarization and Angle of Incidence

Consider a shield consisting of planar, homogeneous, anisotropic layers
arranged as shown in Figure 23. Each layer is assumed uniaxial with the optic
axis parallel to the xy plane. Input and output regions are homogeneous and
isotropic with relative permittivities r" and c', respectively. A plane wave
of radian frequency w is incident from the region z < 0 on the shield with
angle of incidence .
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Figure 21. Shielding effectiveness of a single layer anisotropic

shield for various fiber orientations. A plane wave
polarized in the c = 0* direction is normally incident
on the input side of the shield, shield parameters are

4 2t = .00525 inches, a = 2 x 10 mhos/m, 0 2 = 2 x 10
mhos/m, C rl = r2 = 3.
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Figre 22. Sh .. ing effectiveness of 4-layer and 7-layer
auicotropic shie r.. Fiber orientations for 4-layer shield are

(O' , + 45%, 90); for 7-1ayer shield are (0, + 45, 90, + 45%Each Layer has t = .00525 inches, oI  2 x 104--mhos/m,

a2 2 x 102 mhos/m, crl C mr2 o s.
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Figure 23. Multilayer Anisotropic Shield with Incident Plane Wave at
Arbitrary Angle of Incidence. Shield Infinite in Extent
in xy-Plane. Plane of Incidence is the xz-Plane.
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To evaluate the shielding provided by this structure, the problem may

be stated as follows. Given the parameters of the anisotropic layers of the
shield plus the frequency and direction of propagation of the incident wave,
determine the reflected and transmitted waves. Using the techniques of
Section 5.3 of this report, the above problem reduces to that of determining
the transfer matrix of the stratified anisotropic shield for the specified
excitation. The folloiwng derivation of the necessary transfer matrix is

similar to the optic problem solved by Semenko and Mironov [20].

Within each anisotropic layer, Maxwell's curl equations become

V X E = -jwi H
4_- ++ (72)

V X H = (a + wc)E

where " and+ are the matrix representations of the layer conductivity and
permittivity, respectively, and unity relative permeability has been assumed.

Eliminating H from (72) yields the wave equation for this type of
anisotropic media.

v2 - 2

V = V(V E) <C>E (73)

where

2 2

c

<E> - j -- *= U Complex permittivity

r WE
0

c = Matrix representation of relative permittivity
r

E = Permittivity of free space, and
0

E and a are assumed to have the same optic axis.r

Based on the assumption that each layer is uniaxial and recognizing

that the matrix representation of the complex permittivity is symmetric [21],
<E> can be written in the following form.

x y z

l1  £12

y £12 C22 0 (74)

Z 0 0 £33
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where

2 2C Cl =  lCos C + C2 sinC

E 22 E I1 sin C +c 2 CosC

= (E2 - t) sin C cos C

£33 C 2

El, E2 are the principal axis complex permittivities

is the angle between the x-axis and the optic

axis.

The tangential field components and their first derivatives are contin-

uous across any interface parallel to the xy plane. Thus,

3 = 0

9y -

-o 0 E:or sin 0 = constant = -jk

where C is the relative permittivity of the input medium.
or

Substituting (74) and (75) into (73) yields for the z-component of E

-Jx

E =--D E (76)
z f zx

where

kx =o c -sin 0

D = d/dz

z

f 2 c k233-

The tangential field components E and E must satisfy the following homogen-

eous matrix equation.

2 2 2 20 Col + i +

= (77)

0 812 C2E2 k 2 + D2  E
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Equation (77) is a system of two second-order ordinary differential equations.

Solutions of the form exp{-jk z} are sought. Thus, Dz = -jk and after

simplification (77) becomes -Jkz

2

0  2 k 2  o_33 2 E
o= 1 z f o 12

i o(78)
L0  B2 E2 C k2 -k 2  E

'L 0c 120 -2k

If (78) is to have a non-trivial solution, the determinant of the coefficient
matrix must be zero. This constraint yeilds Fresnel's equation and permits

the solution for the z-compdnent of the wave vector, k . After some algebraic

manipulation, the following quadratic in k2 is obtaineA.
z

0- (k2 -[k 33 [ [Ef33 l 1 g + C 12] (79)

where

2 2ig 0 22 x "

Solving for k2 yields
z

k 
2  f cl l i 2 E 2

S 2 1 f { + g  f _ g]2 + 4f 2 (80)
z 33 -- 33 0 33

S (C + R).

Denoting the four admissible solutions (80) as k. for i = 1, 2, 3, 4 yields1

I1

1 43
(81)

k = 1 7C--R= _k 4

The general solutions for E and E can now be obtained from (73) and are of

the following form. x y

4
E (z) = i yiqi exp{-Jkiz}

(82)

4
E (z) = qiexp{-Jkiz}
Y i=l5
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where

f E2
E3 3

Y 2Y3 = E _
1 1C33

f ':12
C3 3

Y2 = Y4 = E
(2 fE 11(k2)2 - f l-

33

Likewise, the tangential components of the magnetic field are of the form:

4

H (z) = q ki exp{-jk.z}
x W1~ 1 1 1(83)

'!E33 4

H (z) = -i q0i k. exp{-jkiz}

The constants q. (i = 1, 2, 3, 4) can be evaluated by applying boundary condi-
tions to the tangential components of the electric and magnetic fields.

Using (82) and (83), the tangential field components may be expressed
in matrix form as follows.

Q(z) = 1 e(z)Q (84)

where

E x(z)-Ex(Z )

H (z)
y

H x(z)Hx(

5q

,q q2
Q q--

"L q4_j
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exp(-jklZ) 0 -0 0

0 exp (-jk2 z) 0 0

0 0 exp(-jk 3z) 0

0 0 0 exp(-jk4 z)

¥I Y2 'Y3 Y4

1 1 1 1

p i¥'k1 QlY 2k2  PlY 3k3  Plk 4 Y4

Q2 1 P2k 2  P2k3  P2k 4

2
o 33

i

Likewise, the inverse of the matrix is

1 -Y2 i/Pk 1  -Y 2 /P 2 k1

- y -1 -i/P 1k2  y1 /P2k2
1 - 2 -1I/p 1 k1  y 2 /P 2 k1

-1 y i/Plk -Y/P k
1 2 1

where A = 1- y2

and k and k2 are the two solutions to Fresnel's equation12

Yi for i =1, 2

f z kz=k.
z 1
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Consider the layered shield depicted in Figure 24. In each region the
tangential field

Region I Region 2 Region 3

zI z2

Figure 24. Layered Anisotropic Shield

components are given by (84)

Region 1. Q(z) = FIcI(Z)Q1  z < Z

Region 2. Q(z) = F2c2 (z)Q2  Z1 < z < Z2  (85)

Region 3. Q(z) = F 73(zQ z > Z

Column vectors Q., Q are chosen such that the tangential fields Q(z) are

continuous throughou? the three regions.

Q(ZI) = rIC (Z1)QI = f262 (ZI)Q 2  (86A)

Q(Z2 ) = F262 (Z2)Q2 = ] 3 3 (Z2 )Q3  (86B)

From (86B)

Q2 = U 2E2(Z2)]-IQ(z2) " (87)

Substituting (87) into (86A) yields

Q(Z1) = r 2 E2 (ZI )[ F 2E2 (Z1 )] - Q(Z2)

= P2 [F 2 (ZI) 2 1(Z 2 ) jr 2 1Q(Z 2 ) (88)

S[F2 c2 (Z -z )- 1Q(Z 2 )

Equation (88) specifies the transfer matrix (note that this transfer
matrix is for output variables in terms of input variables) for the region
Z z < Z The quantity Z2 -Z is simply the thickness of the region. For
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a system of N layers, each of thickness d., the overall transfer matrix is
simply the product of the transfer matricds for the individual layers.

T l L% )rld ] (89)

From equation (89) the transfer matrix of a single anisotropic layer of
thickness d can be written in the following form.

A A B B

11 12 11 12

A21 A22 B21 B22
T= (90)

C1 1  C12  DI 1 D12

C21 C22 D21 D22

where

11 =D 1 1  cosh 1 + sin cosh
Cos-U - d-

A =D i in2 h 2.  2
A22 = D22 cos -2 cos h01 + Cos Cos r cosh 2.

21 12= 12si o t 0

A =D 12= A2 i
cs =I n L Cos osh I - cosh 2

A12 = D21 = cos A 21

1 °4 22 1

B c o cos sinh ei + cos 4 sin sinh

B12  2 A 1 1 2 2]s
I 

A
B B Cos - sinh i -I cos 02sinh sin Cos

B22  2 sinh 0 + Cos Cos sinh
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1 Vos 2 A 1 2
CII O cos sinh0 + -sin sinh

cos Uh p1  2 cos

C12 21 2 sin C cos C sinh0 1 -- cos sinh
cos U L Tl 2

= os 2 1 3~ 2 A2 2 O sin C sinh e + C cos cos C sinh 0C2 cos U 1 ql TI12

and

Al =

2 A or 2

E: 2 0

A or . 2

cos U= 1- sin o Co
2

2A 2 cor .2 s2

cos V=cos U-- sin osin
E: 0

O1 = jk l d

^62 = Jk2d

Scattering parameters and hence reflected and transmitted fields can
now be calculated using Equation 71 of Section 5.5 of this report. Equations
(90) reduce to Equation (66) of Section 5.3 when the angle of incidence,
is set equal to zero.

6.0 Summary and Conclusions

"ABCD" and "Scattering" matrix analysis techniques for determining
shielding effectiveness of isotropic and anisotropic multilayered shields are
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presented. These techniques are well-suited to computer implementation. Such
programs have been generated and reported on separately.

Given appropriate intrinsic material properties as input, the computer
simulations yield surface transfer impedance and shielding effectiveness
numbers in excellent agreement with Boeing [6] experimental data. The programs
can also be used to infer intrinsic material parameters given measured surface
transfer impedance and/or shielding effectiveness data.

From reported measurements on advanced composite materials, it is
apparent that the major shielding problem associated with these materials
arises from seams and joints. Even in the laboratory under well controlled
conditions, it has proven exceptionally difficult to obtain reliable, repeat-
able joints. Many of the measured results appear erratic (especial-ly in
comparing between different measurement schemes) largely due to uncontrollable
seam and joint leakage where the composite sample is mated to the measurement
system.
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APPENDIX A

DERIVATION OF EQUATION (9)

Moser [71 and Bannister [8, 91 have provided an integral equation

solution for the shielding effectiveness of the two-loop/infinite flat plate

geometry assuming uniform current in the loops. It is assumed that the shield

can be neglected. The complete expression for the shielding effectiveness as

given by Bannister is shown in equation (A-1).

CO2 zI

i J(a)- 0°dX (A.)
1T

0
S. E. 20 log 2O

*dB 10 2 k X)~otTo

J12 1d
0

where

C [ r/T + ~)2 (T/To - 2 r2C-2tT -
0 r 0 r

T =(2 + 2/2

1= (2 + y2)2

Y 2= j = free-space propagation factor
air

1/2
y = (jO o p a) = propagation constant in the shield

(displacement currents are neglected)

=JILL = ( po01O2)i/2 i/2-2 1
Tr W pr a/2

= (2/w p a) /2 = skin depth in the shield
o r

Pr = relative permeability of the shield

t = shield thickness

a= shield conductivity

z = rI + r2 = center-to-center separation of the two loops

J1 (Aa) = Bessel function of order one and argument (Aa).

a = loop radius

A = dummy variable of integration

2 2
r =  +z

X air  = wavelength in air
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Simplified approximate forms of Moser's formula can be derived under
certain conditions [3, 41. Let r' - [a2 + (z - t)2 ]1 /2 be termed the

Xairmeasurement distance. Then for conditions such that r' < T-- , rt > 2,
T r'

T r' > 10 and r > 10 are satisfied, the shielding equation takes on ther r
much simpler form given below.

S. E.dB 8.686 T t + 20 logl0 4(r 8 5  )( -L)( ) (A.2)

S.EdB r .8 +2 ~ l 8.485W ( - r A3
r

If, as is usually the case, z>>t, then:

S. E. dB 8. 686vr/-T t + 20 log 1 0 1 T r Zi r)21 (A.3)
r (~

If in addition z>>a, then:

TZ
S.E. 8. 686'2T t + 20 'Log r

dB r lo 10 8.48511 (A.4)r
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